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A random walk with exponentially varying step, modeling damped or amplified diffusion, is studied. Each
step is equal to the previous one multiplied bytap factor s(0<s<<e). There is a symmetry under the
transformatiors— 1/s relating different processes. Fer 1/2 ands>2, the process is retrodictiee., every
final position can be reached by a unique pathd the set of all possible final points after infinite steps is
fractal. For step factors in the intervidl/2,2], some cases result in smooth density distributions, other cases
present overlapping self-similarity and there are values of the step factor for which the distribution is singular
without a density function.

PACS numbd(s): 02.50—r, 05.40—-a

I. INTRODUCTION AND DEFINITION OF THE MODEL where o) y==*1 is a matrix whose rows are all possible
combinations ofN plus or minus signs(How the rows are
The standard random walk, with a constant step, is a powerdered by the index is for the moment not important but
erful tool for studying several physical processes such ase will later choose a particular orderingVhen no confu-
diffusion, transport[1], aggregation, structure formation sjon can arise, we will suppress the argumextand/ors.
[2-4], and diffusion controlled reactiof§—7]. In this paper,  This set has a lower and upper bound corresponding to the
we will study a random walk with a step length varying cases where all signs are negative and positive. Then,
exponentially in time. This problem was suggested in the
study of the effect of state reductigonollapse in multiple 1-sN 1-sN
position or momentum observations of a quantum- 1-s = '
mechanical particlg8]. The detection of such a particle in a
one-dimensional space, at the right or at the left of its posi- We will call this processcentered It is convenient to
tion expectation value, would leave it in a state, shifted to thelefine an equivalerdrifting process where, on théth step,
right or to the left, with a reduced position indeterminacy.there is equal probability of staying at the same place or
Every subsequent observation of the same type would corr¢gamping to the right a distance of lengsil~1. Let us denote
spond to a right or left jump of reduced length. Under somepy {Y,(N,s)}, 1=0,1,...,2'—1 the set of all possible po-
assumptions, the step length will vary exponentially. How-sitions afterN steps. We have then
ever, beyond the original motivations for the process, the
problem posed turned out to be interesting in its own right. N1
Let us consider a random walk starting at positks 0 Yi(N,s)= kz by ks, (€
in a one-dimensional space with jumps to the right or to the -0
Ieft.with qual prpbability. In.the first step, t'he partiplejumps whereb, = (o, «+1)/2=0 or 1. Therefore,
a distance” and in the following step, the distance jumped is ’ '
s/, where thestep factor an be any positive real number. 1 11-¢gN
So, theNth step is of length’sN~? to the right or to the left {Y|}=[§X| t3 E]
with equal probability(We will always take/’=1 except at
one comment later where the limit—0 is considered.If  Clearly, this process is identical to the previous one but
s<1 (s>1), we have exponentially decreasifigcreasing  shifted to the right such as to make the lower bound equal to
steps and i=1 we recover the standard random walk. Letzerg put with the same upper bound as in E2). Another

2

4

the set{X,(N,s)} for 1=0,1,...,2'—1 denote all possible process, equivalent to the centered one, that allows more
end positions of the particle aftét steps with step factes.  physical insight, is obtained by considering a particle moving
These values are in one dimension, starting frox§(0)=0 att=t, with con-
N-1 stant speed/=*1. At the timesty=0t,t5, ... ty_1 itiS
X/(N,s)= 2, s, (1)  decided, with equal probability, to keep moving in the same
k=0 ' direction or to change direction. The position of the patrticle

at timety will be then given by
*Email address: dltorre@mdp.edu.ar Xty =t —tg)=(tr,—ty)x-- - £(ty—tn_1)- B
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two cases: eithelp, =0 and the set afteN steps is kept, or

b, v=1 and we generate a new set obtained from the previ-

ous one by adding" to all its elements. We have therefore
{YI(N+1)}={Y,(N)FULY,(N) +sN}. (6)

The corresponding relation for the centered picture is

{XI(N+D)}={X;(N)=s"}. )

It is convenient to define, for the drifting case, tep Gy

as the difference between the smallest element of the second
(a) set and the largest one of the first set in the right-hand side of
Eq. (6) above:

1 N_
[T 8>s = G :SN_S 1 ®
) : . N+1 _ .
uniform Gaussian uniform s—1
fractal & \ overlapping | sclf-similarity /* fractal & For step factors=2, the gap is positive for alN and self-
retrodictive retrodictive R

//—a , similarity patterns are produced because, from one step to
0 1, e 1 2 S the next, the same set of points is created, but shifted to the

right by an amount large enough to keep the two sets sepa-
rated. One can also check that, in the case, the gap is

damped bounded amplified unbounded

diffusion diffusion nondecreasing, that i§y1=Gy. Considering the casd
=1,2,... weinfer that, whers=2, the gapGy is the larg-
@ critical point est spacing in the set of final positions aftiésteps and, for
B morphological critical point large N, it diverges likesN™1. For each integer number of
A smooth density steps, there is some value of the step factor in the interval
(b) se[1,2], the root ofsN(s—2)+1=0, such that the corre-

sponding gapGy .1 vanishes. For values of the step factor
_ ) smaller than the root &N(s—2)+1=0, the gap is negative
_FIG. 1. (a) Space-time evolution of the process for 0.4. For = 14 the two sets in Ed6) overlap destroying thetrict self-
this value of the step factor the paths never cross each other. T milarity of the se{Y,}. However in most cases, the overlap
largest gap is at the center and smaller gaps are created at all leve ves not wipe out completely the repetitive fe:';lture of self-
(b) Summary of the dependence of the process on the step facroréimilarity Only for some special cases, that we will study
) i later, the self-similarity features are completely wiped out.
Now if (ti—t—;)=7 is a constant, we have the standard\ye may denote bypverlapping self-similarithe remaining
random walk. If ¢,—t_,) = 7 is taken from some distribu-  gg|f-similarity that the overlap did not erase. There are values
tion, we obtain the standard random walk with random vary-s 5 (jess than 2andN such that the two overlapping sets in

ing step[9] and if (t,—t,—;)=s""* we get the process de- the right-hand side of Eq(6) will contain the same value.
fined above. A space-time diagram for this process is showfthis means that there may be different paths reaching the
in Fig. 1(a) for s=0.4. In these models we can assume thalsame final position. More on this will be said later.
the change in velocity can be done with an energy exchange pjyiding Eq. (1) or (3) by sN~1, we find that there is a
with the environment and, as a consequence, different pathgmmetrys— 1/s in the process. That is,
will have different energy cost and the concept of tempera-
ture could be introduced. This model is related to the Ising
one-dimensional model and we will not treat it further in this Xi(Ns) =(X ( N 1)] 9
paper. The space-time representations of the process, as in sh—1 ! s/’
Fig. 1(a), are useful in order to understand some of its fea-
tures. For instance, the formation of holes when1/2 is  (The orderingl andl’ in these sets is not the sam the
understood because the two branches corresponding to tgocess, the tim@ is represented by the number of stés
first step being to the right or to the left do not overlap, Since the step length varies exponentially wititime), the
creating a central region that cannot be reached by any pattransformatiors— 1/s is equivalent to a time reversal trans-
If 1/2<s<1, the two branches will overlap and clustering formation T— —T. The process is therefore invariant under
regions will be generated. More on this will be said later. the combined transformatiog— 1/s,T— — T. This symme-

try is useful because everything that we can provesfsrl

can be used in order to reach a corresponding conclusion for
s<1 and vice versa. As an example of this we can prove
In the drifting picture, it is easy to relate the set of final that, fors=2 ands=1/2, the values in the set are uniformly
positions afteN andN+ 1 steps. AfteN steps, we can have distributed. Let us take=2 in Eq. (3):

IIl. GENERAL FEATURES
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N—-1

1d"¢n(u
Y= b2 b =0 or 1. (10 <Xr>N:.¢¢ : 13
k=0 itodu” |,
This is the expansion of all integetsn base 2 because we Where
can choose the ordering of the rows of the malyijx such N_p N_1

thatY,=1. Therefore the setY,(N,2)} contains all integers 1 )

0,1,2...,2-1 uniformly g[istlr(ibutg}éi. By the symme?ry on(u)= ,ZO 2—Nexp(|ux|):k1:[0 cogus), (14
—1/s, we conclude that the sdty,(N,1/2)} is also uni-

formly distributed with 2' values between 0 and I(IZ which implies the recurrence relation

—1)/2Y" 1, The uniform distribution fors=1/2 is clearly

illustrated by the construction of the corresponding space- DNt 1(U) =cogu) pn(SUu). (15
time diagram as in Fig. (&).

From Egs(1) and(3) defining the process, one can easily || ERACTAL, OVERLAPPING SELF-SIMILARITY
conclude that every position reached aftex N steps can be AND SMOOTH DENSITIES

considered as the starting point of the process, but scaled by
a factors™. In order to see this clearly, we just have to  An interesting feature of the process ®* 2, and there-
decompose the sum in two sums, the first one running up téore also fors<1/2 due to the symmetry— 1/s, is that it is
s™= 1 and take common factaf” from the second sum. This retrodictivein the sense that a given end position can only be
feature is also clear in the space-time diagrams where ead@ached by one path, that is, by only one combination of the
point is the starting point of the same tree but with its sizecoefficientsa, y or b, . This is clearly seen in the drifting
reduced(or enlarged ifs>1). As a consequence of this, picture in the case>2 because in this case E() is the
whenN—«, every pattern of the process will be repeatedexpansion of the numbef, in the bases, and, of course, the
infinite times but each time scaled by an extra fastdthese ~ “digits” b, , are unique[For 1/2<s<2, Eq.(3) would no
repetitions generate the self-similaritgr overlapping self- longer be the expansion of a number in a bpse.
similarity in the case 1/2s<2). In particular, if for some The last remark leads us to another interesting feature of
value ofs, there is a path that returns to the origin after somethe set of end positions in the case tbat1/2 ors>2 and
number of steps, then every point can be also revisited aftewhenN—ce. In this case the sets are fractals because they
the same number of steps. correspond to the expansion of numbers in a base wirdye
The first moment of the distribution of final positions in the digits 0 and 1 are taken and all others are excluded. The
the centered picture is obviously zero. From Efj.and con-  most famous example is wher- 1/3 that results in the set of
sidering that all end positions aftdr steps have equal prob- Cantor[2—4]. We can find the fractal dimension fer-2 to
ability 1/2N, we can easily derive a recurrence relation forbe D=In2/Ins as follows: for fractals generated by growth

the second moment, processes, one can define the fractal dimensioby M
~LP, whereM is the mass of the objectthe number of end
(X5 1= (X2 + N (11) points in our caseandL is its linear sizg2—-4,10. In the

drifting picture, and considering the cadés-N+ 1, we see
. . from Eq. (6) that M—2M and from Egs.(2) and (4) that
that iterated results in L—L(1-s""1Y/(1—sN). Combining these relations we ob-
tain, forN—«, the fractal dimension given above. Using the
N-1 1—g2N “box counting” method[2-4,1Q or applying the transfor-
o?=(X%)= D, = : (120 mation s—1/s in the equation forD, we find the fractal
k=0 dimension fors<1/2 to beD= —In2/Ins. From this fractal
structure, it is clear that whesis outside the intervdll/2,2]
For s<1 the standard deviation is constant for lafges®  the end positions cannot be described by a continuous den-
—1/(1—-5?). If s>1, it diverges likes?™ and fors=1 it  sity function because there will be “holes” of all sizes un-
grows like N, as is expected in the standard random walkreachable with this random walk. We can see how these
The step factors=1 is therefore like a critical value that holes are built using the gap defined earlier. Whet2, the
separates two different behaviors. On one sidecl) we gap Gy grows like sN"1. Even if we rescale the one-
have damped diffusiorwithin a bound domain and in the dimensional space dividing by the width of the distribution
other side 6>1) we haveamplified diffusionin an un- o~s", we still have holes of finite size-1/s. Furthermore
bounded region. We will see later that the casesl/2 and we can use the symmetiy—1/s and project the gajisy
s=2 are also critical values separating different behavior notlivided bysN~* as required by E¢(9), and we obtain, in the
apparent in Eg(12), namely, fractal and nonfractal distribu- drifting picture and wherN—c ands<1/2, the size of the
tion of the end points of the process. These are like criticalargest hole (*2s)/(1—s) that does not vanish wheN
points separating two morphological phases. This depen—«. Summarizing, fors outside the interval1/2,2] the
dence of the process on the step factor, as well as othgrocess is retrodictive, it has a fractal structure and does not
features that will be explained later, are summarized in Fighave a continuous limit.
1(b). The general analysis for the case whea[1/2,2] is a
In general, all moments can be obtained from the momentery difficult problem. However, for some cases we have
generating function as some results. Of course, the casel is well-known with a

1-¢°
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binomial distribution for the end points that goes to a Gauss=1/\/2. Separating the even and odd powers in Eg. we
ian whenN— o and/— 0 with constan=+/N/. We have have
seen that in the cases=1/2 ands=2 there are Y ending
points uniformly distributed that in the limN—o are rep-

1) & 1\ & 1\"
resented by a uniform density function. In general, due to the > E :kgen = E +k%d - E . (18
symmetrys— 1/s, we only need to solve the problem in the

interval (1/2,1). Now, taking a common factor {2 from the odd powers,

If we try to solve the continuous problem whih- in  there remain two sums over even powers that can be re-
the same way as is done for the casel, we find that this  named with another index running throuah integers, leav-
is impossible because fer<1 the width of the distribution ing
o?~/?|(1-s?) is constant for largeN and therefore it
would collapse to zero in the limit*—0. The known solu-

1 1
tion for s=1 is useless, cannot be extrapolated, outside this x|, E) E
precise value o§.

The first thing to notice wheae (1/2,1) is that there are \yg gee that the two sums correspond to the process for
no “holes” in the distribution whenN—oo, that is, every —1/2 and therefore the random variabig(-c,1/\/2) is the

pointxe[—1/(1-s),1/(1-s)] can be reached by, at least, 5m of two random variables with known density function
one path. In order to prove this, consider some arbitrarypiform)

valuex=0 in the interval and let us construct a path ending
there (the extension tax<0 is trivial). Starting from the

origin, let us makem steps to the right until wexceedhe Xi| o
value ofx. The distancé\ to the pointx is smaller or equal

to the last stepr<s™ *. From there on, we continue the The resulting density function is the convolution of two uni
ath but going to théeft by r additional steps until we cross L9 S ) X -
P going y P form density distributions. This result can be generalized for

again the positiorx. If s>1/2, it is guaranteed that this sec- 1172 lting i luti £ unif density f
ond crossing occurs after a finite number of steps, becausg_ resulting inn convolutions of uniform density func-

the maximal distance that we may go to the leff/(1 tions. \_Nhen_nﬁoo t_hese multiple convolutions approach the
—s), is larger thanA. Clearly we are now closer to the Gaussian distribution as is expected becaug/é_ill for n
locationx. Now we start walking to theight until the next ~ — - These result_s are |Ilustra_ted by a_numerlcal simulation
crossing. In the limit, we approach the point as much as wé@f the process takindl=15. This value is large enough be-
like. The completeness property of the real numbers com¢@use larger values & do not result in significant changes
pletes the proof. One can prove that the number of step® the distributions. In Figs.(@) and 2b) we find histograms
between two changes of directionfisite. Therefore, since o the density distribution function for the cases 1/2
the total number of steps is infinite, the paths that we havénds=%/2. In the first case, the distribution clearly results
just constructed will have an infinite number of turning from the convolution of two uniform distributions and in the
points [except, of course, wher takes the extreme value second case, the resulting distribution is very close to a
1/(1—s) that has only one path to reach it without any turn-Gaussian as the fit shows. These two smooth distributions
ing point. are in contrast with the cases shown in Fig. 3 that clearly
Now we can prove that, under some condition, there is ashow overlapping self-similarity structure. Actually, the ap-
infinite number of paths arriving at the same location, that ispearance of overlapping self-similarity is expected, as was
the process is no longer retrodictive. For this, we considegxplained, being a consequence of &J. Perhaps the inter-
that the path constructed above will have an infinite numbegsting question is why the smooth cases do not show it ex-
of turning points where the direction of propagation, right orplicitly. We can indeed see examples where the convolution
left, Changes_ We will show that at each Change of directiorpf fractal distributions result in nonfractal smooth distribu-
we can choose another path, different from the one considions. In order to clarify this, we can generalize the argument
ered above. For this, we can make one stemyfrom the Ppresented above with the conclusion that, if we know the
locationx, just beforecrossing it, and then change direction density function for one value af=r, then we can find the
again towardk. Since this extra step has taken us away fromdensity function for an infinite number of valueso# Vr as
x, the condition that guarantees that we will cross the locathe n-fold convolution of the known distribution. Now let us
tion x becomes stronger. With a similar reasoning as abovdake r<1/2 corresponding to a fractal distribution and
we find that thesufficientcondition iss=2/3. Under this choosen such that\r corresponds to a step factor with a
condition for the step factor, there are then infinite pathssmooth distribution such as™2. Therefore we find the, a
ending at any locatior. In the region where this condition is bit unexpected, situation that the convolution of fractal dis-
not satisfied, that is, for 12s<2/3 no general statement tributions lead to a smooth continuous distribution. The sim-
could be found but one can find an infinite number of pointsplest example of this is that the convolution of two fractal
such that each one of them can be reached by an infinitdistributions fors=1/4 results in the uniform distribution
number of paths. corresponding te=1/2. We have therefore seen the possi-
The existence of density function for the case bility that, due to overlapping, the self-similarity patterns can
=1/2, N—o can be used to find the density for an infinite be completely whipped out. However, for this to happen
set of values ofs. For example, let us consider the case some sort of “fine tuning” of the step factor is required and

X
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FIG. 2. Histograms for the number of patRsreaching an in-

terval at the positiorx after N=15 steps with(a) s=1/y2 and(b) FIG. 3. Histograms for the number of patRsreaching an in-
S= 1/6\/5. The first case is the convolution of two uniform distribu- terval at the positiorx after N=19 steps with(a) s=0.52 and(b)
tions and the second case is very close to a Gaussian distribution 8s- \[(7—1)/27=0.58. Both cases show overlapping self-
is shown by the fit. similarity. The width and location of the clusters agree with the

values calculated.
therefore we expect that the set of values for the step factor

with this property will have zero measure. clusters and so on. In Fig. 3, histograms for the end positions
Playing with the space-time diagrams as in Figa)lwe  after N=19 steps withs=0.52 ands=/(7—1)/27=0.58
find that for s<1/2 the largest hole is centered around theare shown. This second value is of interest for the application
position X=0 and has a width (24s)/(1—s). When 1/2  of the process to a quantum-mechanical probl8mNotice
<s<1, instead of a central hole we will have a central clus-that the first case is less than 5% away from the value
tering of end points produced by the overlap of the set of=1/2 where a smooth uniform density is generated, suggest-
paths that have the first step to the right with the set correing a very strong dependence of the distribution on the val-
sponding to the first step to the left. The width of the centralues ofs. These histograms clearly show patterns of overlap-
cluster, that is, of the overlap region, is§42)/(1—s) (for  ping self-similarity explained above with the clusters having
largeN). After the first step, the same reasoning is applied tahe predicted position and widths. In the case of Figp),3
explain the formation of another hol@ s<1/2) or cluster clusters within clusters are clearly seen.
(if 1/2<s<<1) but now shifted to the right and to the left. So, We have seen that for most values of the step factor in the
an infinite number of holes or clusters are produced. In geninterval[ 1/2,1], the density of the final positions will show
eral we expect to find a clustéor hole at a distance (1 overlapping self-similarity features. For valuessdh a sub-
—s"/(1—s) from the center of widths"|4s—2|/(1—s) set of zero measure, the corresponding density is a smooth
weren=0,1,....There is more in the case ¥3<1 be- function. We will now see that there is a set of valuesof
cause each point within a cluster is the starting point of théhat have the property that different paths meet afténige
same structure described. We will then have clusters withimumber of steps. Assume for instanses (y5—1)/2. In this
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case there are two different paths that return to the origin atulation of paths reaching it. A distribution will have a den-
the third step. They are-1+s+s?=0 and 1-s—s?=0. sity function if the number of paths falling within an interval,
These two paths form a square in the space-time diagram arstivided by the total number of paths{pand by the size of
we may therefore denote this case asquare encounter the interval, goes to a constant when the size of the interval
There arefour different paths that return to the origin after vanishes. This constant is proportional to the value of the
six steps. One of them is for instaneel+s+s’—s°+s*  density function at the point. We can see that this is not true
+8°=—1+s+5°+s%(—1+s+s?)=0. Clearly, for this for every interval in the case that we have encounf®.
step factor and foN—c, there is an infinite number of Let us take for instance a step factor producing square en-
paths that return to the origin due to square encounters. Gefounters after three stepighe simplest one ConsiderN
eralizing the argument, we find a countable infinite numbesteps multiple of 3N=3n, and an interval of measus"

of values for the step factor, such that the origin can bearound the centex=0 [that is, equal to the length of the
reached by an infinite number of paths caused by squaréN+ 1)th ste. The number of paths falling in this interval
encounters; because for each intemer 2 there is a value of due to the square encounters i Zhere are actually more
ssuch that the path returns to the origin at théa step; with ~ paths falling in the interval aside from those with encounters.
the first step to the right and all other steps to the(eftthe  ThereforeR, the relative number of paths falling in the in-
oppositg. The value of the step factor is the root sf  terval per unit interval length, is such that

—2s+1=0 [there is always a real root in the interval N

(1/2,1)]. In the example above we have=3. These en- 2" .

counters correspond to the case of vanishing @ag=0 of R= 23ng3n - E ~(1.08", (19)

the drifting picture withs<<2. This property of the origin is

not unique because, as already mentioned, every point viggshere we have used the value of the step factor for this
ited can be considered to be the starting point of(fualed square encountes=(+/5—1)/2. Clearly, in the limit where

process. o _ the interval vanisheg)— =, the ratioR diverges indicating
Another type of encounter after finite number of steps isat there is no density function.

when different paths starting at the origin meet again at the
mth step, but not at the origin. Due to the left-right symme-
try, there is another meeting point at the same coordinate but

with reversed sign. Each one of these two meeting points is The random walk with exponentially varying step has
the starting point for the same processth a common fac-  been presented from a physical perspective describing
tor s™) resulting in four meeting points. Clearly, in the limit, damped §<1) or amplified 6>1) diffusion.s=1 is there-
there will be an infinite number of points with this property. fore like a critical value separating two phases of bound or
The value of the step factor that produces such a behavior ignbounded diffusion. The symmetry under the transforma-
the simplest case is the solution 8f1—s—s’~s’=—1  tjon s—1/s for finite number of stepd relates these two
—s+s5°+s% that is, s®+s°~1=0 with a roots~0.755.  phases and reduces the range of study to the vaises

This last example can be generalized to a class of cases thphe dependence of the process on the value of the step factor
we may callrectangular encounterbecause the two paths js summarized in Fig. (b). Whens<1/2 ors>2, the pro-
form a rectangle in a space-time diagram. Imagine one patbess is retrodictive and the set of final positions is a fractal.
making the first step to the rlght and all other steps to thqzor step factors in the inter\/8|€[1/2,2], whenN—x, the

left. We can find a value af such that this path will encoun- process is no longer retrodictive but, in most cases, overlap-
ter a path made of the first steps to the left followed by  ping self-similarity patterns appear. For some special values
steps to the right. For this encounter, the step factor must bef the step factor, the density becomes smooth. Another set
such that Es"+s"" 1+ .. +s"""71 that is, (1-s")/(1  of values of the step factor, of zero measure, generates a
—s)=1/s". For every pair of integera=2r=2 there is a different type of encounters of the paths after finite number
solution in the intervabe (1/2,1). The example above cor- of steps. These encounters result in singular distributions
responds tm=r=2. Aside from the square and the rectan-without density function. A complete study of this region is
gular encounters we can expect more complicated encountefigwever, an unsolved problem that has been treated from the
corresponding to closed polygons in the space-time diamathematical perspective of random series as a special case
grams. In addition to thesaolygonal encounterghere may  of Bernoulli convolutions/11,13,14 with emphasis on the

be encounters of paths having a different number of steps. Imathematical generalizations. The aim of this paper is to
the space-time diagram, they would result in an open figurgresent the properties of the process in a simple and attrac-
suggesting the name a@jpen encountersThe general treat- tive way with emphasis on the physical aspects of the prob-
ment of all possible encounters seems to be a difficult problem. We hope with this contribution to motivate further
lem, equivalent to the study of all possible polynomials withprogress on this subject.

coefficients 0,=1, £2 with root in[1/2,1]. It has been

IV. SUMMARY AND CONCLUSIONS

proven[11] that the set of values afcorresponding to these ACKNOWLEDGMENTS
encounters has zero measure and there is an open mathemati-
cal conjecturd 13] that the set is at most countable. This work has received partial support from “Consejo

The remarkable thing about the encounters is that, in thesdacional de Investigaciones Ciditas y Tenicas
cases, the distribution becomes singular and does not have(@ONICET), Argentina. 1.G.M. would like to thank the
density function. The intuitive reason for this is that, when*Comision de Investigaciones Ciefitas” (CIC) for finan-
we have encounters, there are locations with a strong accweial support.
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