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Random walk with an exponentially varying step
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A random walk with exponentially varying step, modeling damped or amplified diffusion, is studied. Each
step is equal to the previous one multiplied by astep factor s(0,s,`). There is a symmetry under the
transformations→1/s relating different processes. Fors,1/2 ands.2, the process is retrodictive~i.e., every
final position can be reached by a unique path! and the set of all possible final points after infinite steps is
fractal. For step factors in the interval@1/2,2#, some cases result in smooth density distributions, other cases
present overlapping self-similarity and there are values of the step factor for which the distribution is singular
without a density function.

PACS number~s!: 02.50.2r, 05.40.2a
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I. INTRODUCTION AND DEFINITION OF THE MODEL

The standard random walk, with a constant step, is a p
erful tool for studying several physical processes such
diffusion, transport @1#, aggregation, structure formatio
@2–4#, and diffusion controlled reactions@5–7#. In this paper,
we will study a random walk with a step length varyin
exponentially in time. This problem was suggested in
study of the effect of state reduction~collapse! in multiple
position or momentum observations of a quantu
mechanical particle@8#. The detection of such a particle in
one-dimensional space, at the right or at the left of its po
tion expectation value, would leave it in a state, shifted to
right or to the left, with a reduced position indeterminac
Every subsequent observation of the same type would co
spond to a right or left jump of reduced length. Under so
assumptions, the step length will vary exponentially. Ho
ever, beyond the original motivations for the process,
problem posed turned out to be interesting in its own rig

Let us consider a random walk starting at positionX50
in a one-dimensional space with jumps to the right or to
left with equal probability. In the first step, the particle jum
a distancel and in the following step, the distance jumped
sl , where thestep factor scan be any positive real numbe
So, theNth step is of lengthl sN21 to the right or to the left
with equal probability.~We will always takel 51 except at
one comment later where the limitl →0 is considered.! If
s,1 (s.1), we have exponentially decreasing~increasing!
steps and ifs51 we recover the standard random walk. L
the set$XI(N,s)% for I 50,1, . . . ,2N21 denote all possible
end positions of the particle afterN steps with step factors.
These values are

XI~N,s!5 (
k50

N21

s I ,ks
k, ~1!
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where s I ,k561 is a matrix whose rows are all possib
combinations ofN plus or minus signs.~How the rows are
ordered by the indexI is for the moment not important bu
we will later choose a particular ordering.! When no confu-
sion can arise, we will suppress the argumentsN and/ors.
This set has a lower and upper bound corresponding to
cases where all signs are negative and positive. Then,

2
12sN

12s
<XI<

12sN

12s
. ~2!

We will call this processcentered. It is convenient to
define an equivalentdrifting process where, on theNth step,
there is equal probability of staying at the same place
jumping to the right a distance of lengthsN21. Let us denote
by $YI(N,s)%, I 50,1, . . . ,2N21 the set of all possible po
sitions afterN steps. We have then

YI~N,s!5 (
k50

N21

bI ,ks
k, ~3!

wherebI ,k5(s I ,k11)/250 or 1. Therefore,

$YI%5H 1

2
XI1

1

2

12sN

12s J . ~4!

Clearly, this process is identical to the previous one
shifted to the right such as to make the lower bound equa
zero but with the same upper bound as in Eq.~2!. Another
process, equivalent to the centered one, that allows m
physical insight, is obtained by considering a particle mov
in one dimension, starting fromX(0)50 at t5t0 with con-
stant speedV561. At the timest050,t1 ,t2 , . . . ,tN21 it is
decided, with equal probability, to keep moving in the sa
direction or to change direction. The position of the partic
at time tN will be then given by

X~ tN!56~ t12t0!6~ t22t1!6•••6~ tN2tN21!. ~5!
7748 ©2000 The American Physical Society
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Now if ( tk2tk21)5t is a constant, we have the standa
random walk. If (tk2tk21)5tk is taken from some distribu
tion, we obtain the standard random walk with random va
ing step@9# and if (tk2tk21)5sk21 we get the process de
fined above. A space-time diagram for this process is sho
in Fig. 1~a! for s50.4. In these models we can assume t
the change in velocity can be done with an energy excha
with the environment and, as a consequence, different p
will have different energy cost and the concept of tempe
ture could be introduced. This model is related to the Is
one-dimensional model and we will not treat it further in th
paper. The space-time representations of the process,
Fig. 1~a!, are useful in order to understand some of its fe
tures. For instance, the formation of holes whens,1/2 is
understood because the two branches corresponding to
first step being to the right or to the left do not overla
creating a central region that cannot be reached by any p
If 1/2,s,1, the two branches will overlap and clusterin
regions will be generated. More on this will be said later

II. GENERAL FEATURES

In the drifting picture, it is easy to relate the set of fin
positions afterN andN11 steps. AfterN steps, we can have

FIG. 1. ~a! Space-time evolution of the process fors50.4. For
this value of the step factor the paths never cross each other.
largest gap is at the center and smaller gaps are created at all le
~b! Summary of the dependence of the process on the step fac
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two cases: eitherbI ,N50 and the set afterN steps is kept, or
bI ,N51 and we generate a new set obtained from the pr
ous one by addingsN to all its elements. We have therefor

$YI~N11!%5$YI~N!%ø$YI~N!1sN%. ~6!

The corresponding relation for the centered picture is

$XI~N11!%5$XI~N!6sN%. ~7!

It is convenient to define, for the drifting case, thegap GN11
as the difference between the smallest element of the se
set and the largest one of the first set in the right-hand sid
Eq. ~6! above:

GN115sN2
sN21

s21
. ~8!

For step factorss>2, the gap is positive for allN and self-
similarity patterns are produced because, from one ste
the next, the same set of points is created, but shifted to
right by an amount large enough to keep the two sets se
rated. One can also check that, in the cases>2, the gap is
nondecreasing, that is,GN11>GN . Considering the caseN
51,2, . . . weinfer that, whens>2, the gapGN is the larg-
est spacing in the set of final positions afterN steps and, for
large N, it diverges likesN21. For each integer number o
steps, there is some value of the step factor in the inte
sP@1,2#, the root ofsN(s22)1150, such that the corre
sponding gapGN11 vanishes. For values of the step fact
smaller than the root ofsN(s22)1150, the gap is negative
and the two sets in Eq.~6! overlap destroying thestrict self-
similarity of the set$YI%. However in most cases, the overla
does not wipe out completely the repetitive feature of se
similarity. Only for some special cases, that we will stu
later, the self-similarity features are completely wiped o
We may denote byoverlapping self-similaritythe remaining
self-similarity that the overlap did not erase. There are val
of s ~less than 2! andN such that the two overlapping sets
the right-hand side of Eq.~6! will contain the same value
This means that there may be different paths reaching
same final position. More on this will be said later.

Dividing Eq. ~1! or ~3! by sN21, we find that there is a
symmetrys→1/s in the process. That is,

H XI~N,s!

sN21 J 5H XI 8S N,
1

sD J . ~9!

~The orderingI and I 8 in these sets is not the same.! In the
process, the timeT is represented by the number of stepsN.
Since the step length varies exponentially withN ~time!, the
transformations→1/s is equivalent to a time reversal tran
formationT→2T. The process is therefore invariant und
the combined transformations→1/s,T→2T. This symme-
try is useful because everything that we can prove fors.1
can be used in order to reach a corresponding conclusion
s,1 and vice versa. As an example of this we can pro
that, fors52 ands51/2, the values in the set are uniform
distributed. Let us takes52 in Eq. ~3!:

he
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YI5 (
k50

N21

bI ,k2
k, bI ,k50 or 1. ~10!

This is the expansion of all integersI in base 2 because w
can choose the ordering of the rows of the matrixbI ,k such
that YI5I . Therefore the set$YI(N,2)% contains all integers
0,1,2. . . ,2N21 uniformly distributed. By the symmetrys
→1/s, we conclude that the set$YI(N,1/2)% is also uni-
formly distributed with 2N values between 0 and (2N

21)/2N21. The uniform distribution fors51/2 is clearly
illustrated by the construction of the corresponding spa
time diagram as in Fig. 1~a!.

From Eqs.~1! and~3! defining the process, one can eas
conclude that every position reached afterm,N steps can be
considered as the starting point of the process, but scale
a factor sm. In order to see this clearly, we just have
decompose the sum in two sums, the first one running u
sm21, and take common factorsm from the second sum. Thi
feature is also clear in the space-time diagrams where e
point is the starting point of the same tree but with its s
reduced~or enlarged ifs.1). As a consequence of this
when N→`, every pattern of the process will be repeat
infinite times but each time scaled by an extra factors. These
repetitions generate the self-similarity~or overlapping self-
similarity in the case 1/2,s,2). In particular, if for some
value ofs, there is a path that returns to the origin after so
number of steps, then every point can be also revisited a
the same number of steps.

The first moment of the distribution of final positions
the centered picture is obviously zero. From Eq.~7! and con-
sidering that all end positions afterN steps have equal prob
ability 1/2N, we can easily derive a recurrence relation
the second moment,

^X2&N115^X2&N1s2N, ~11!

that iterated results in

s25^X2&N5 (
k50

N21

s2k5
12s2N

12s2
. ~12!

For s,1 the standard deviation is constant for largeN, s2

→1/(12s2). If s.1, it diverges likes2N and for s51 it
grows like N, as is expected in the standard random wa
The step factors51 is therefore like a critical value tha
separates two different behaviors. On one side (s,1) we
have damped diffusionwithin a bound domain and in th
other side (s.1) we haveamplified diffusionin an un-
bounded region. We will see later that the casess51/2 and
s52 are also critical values separating different behavior
apparent in Eq.~12!, namely, fractal and nonfractal distribu
tion of the end points of the process. These are like crit
points separating two morphological phases. This dep
dence of the process on the step factor, as well as o
features that will be explained later, are summarized in F
1~b!.

In general, all moments can be obtained from the mom
generating function as
-
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^Xr&N5
1

i r

drfN~u!

dur U
u50

, ~13!

where

fN~u!5 (
I 50

2N21
1

2N
exp~ iuXI !5 )

k50

N21

cos~usk!, ~14!

which implies the recurrence relation

fN11~u!5cos~u!fN~su!. ~15!

III. FRACTAL, OVERLAPPING SELF-SIMILARITY
AND SMOOTH DENSITIES

An interesting feature of the process fors.2, and there-
fore also fors,1/2 due to the symmetrys→1/s, is that it is
retrodictivein the sense that a given end position can only
reached by one path, that is, by only one combination of
coefficientss I ,k or bI ,k . This is clearly seen in the drifting
picture in the cases.2 because in this case Eq.~3! is the
expansion of the numberYI in the bases, and, of course, the
‘‘digits’’ bI ,k are unique.@For 1/2,s,2, Eq. ~3! would no
longer be the expansion of a number in a base.#

The last remark leads us to another interesting featur
the set of end positions in the case thats,1/2 or s.2 and
when N→`. In this case the sets are fractals because t
correspond to the expansion of numbers in a base whereonly
the digits 0 and 1 are taken and all others are excluded.
most famous example is whens51/3 that results in the set o
Cantor@2–4#. We can find the fractal dimension fors.2 to
be D5 ln 2/lns as follows: for fractals generated by grow
processes, one can define the fractal dimensionD by M
;LD, whereM is the mass of the objects~the number of end
points in our case! and L is its linear size@2–4,10#. In the
drifting picture, and considering the casesN→N11, we see
from Eq. ~6! that M→2M and from Eqs.~2! and ~4! that
L→L(12sN11)/(12sN). Combining these relations we ob
tain, forN→`, the fractal dimension given above. Using th
‘‘box counting’’ method @2–4,10# or applying the transfor-
mation s→1/s in the equation forD, we find the fractal
dimension fors,1/2 to beD52 ln 2/lns. From this fractal
structure, it is clear that whens is outside the interval@1/2,2#
the end positions cannot be described by a continuous
sity function because there will be ‘‘holes’’ of all sizes un
reachable with this random walk. We can see how th
holes are built using the gap defined earlier. Whens.2, the
gap GN grows like sN21. Even if we rescale the one
dimensional space dividing by the width of the distributio
s;sN, we still have holes of finite size;1/s. Furthermore
we can use the symmetrys→1/s and project the gapGN
divided bysN21 as required by Eq.~9!, and we obtain, in the
drifting picture and whenN→` ands,1/2, the size of the
largest hole (122s)/(12s) that does not vanish whenN
→`. Summarizing, fors outside the interval@1/2,2# the
process is retrodictive, it has a fractal structure and does
have a continuous limit.

The general analysis for the case whensP@1/2,2# is a
very difficult problem. However, for some cases we ha
some results. Of course, the cases51 is well-known with a
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binomial distribution for the end points that goes to a Gau
ian whenN→` andl →0 with constants5ANl . We have
seen that in the casess51/2 ands52 there are 2N ending
points uniformly distributed that in the limitN→` are rep-
resented by a uniform density function. In general, due to
symmetrys→1/s, we only need to solve the problem in th
interval (1/2,1).

If we try to solve the continuous problem whenN→` in
the same way as is done for the cases51, we find that this
is impossible because fors,1 the width of the distribution
s2;l 2/(12s2) is constant for largeN and therefore it
would collapse to zero in the limitl →0. The known solu-
tion for s51 is useless, cannot be extrapolated, outside
precise value ofs.

The first thing to notice whensP(1/2,1) is that there are
no ‘‘holes’’ in the distribution whenN→`, that is, every
point xP@21/(12s),1/(12s)# can be reached by, at leas
one path. In order to prove this, consider some arbitr
valuex>0 in the interval and let us construct a path end
there ~the extension tox<0 is trivial!. Starting from the
origin, let us makem steps to the right until weexceedthe
value ofx. The distanceD to the pointx is smaller or equal
to the last stepD<sm21. From there on, we continue th
path but going to theleft by r additional steps until we cros
again the positionx. If s.1/2, it is guaranteed that this se
ond crossing occurs after a finite number of steps, beca
the maximal distance that we may go to the left,sm/(1
2s), is larger thanD. Clearly we are now closer to th
locationx. Now we start walking to theright until the next
crossing. In the limit, we approach the point as much as
like. The completeness property of the real numbers co
pletes the proof. One can prove that the number of st
between two changes of direction isfinite. Therefore, since
the total number of steps is infinite, the paths that we h
just constructed will have an infinite number of turnin
points @except, of course, whenx takes the extreme valu
1/(12s) that has only one path to reach it without any tur
ing point#.

Now we can prove that, under some condition, there is
infinite number of paths arriving at the same location, that
the process is no longer retrodictive. For this, we consi
that the path constructed above will have an infinite num
of turning points where the direction of propagation, right
left, changes. We will show that at each change of direct
we can choose another path, different from the one con
ered above. For this, we can make one stepaway from the
locationx, just beforecrossing it, and then change directio
again towardx. Since this extra step has taken us away fr
x, the condition that guarantees that we will cross the lo
tion x becomes stronger. With a similar reasoning as abo
we find that thesufficientcondition is s>2/3. Under this
condition for the step factor, there are then infinite pa
ending at any locationx. In the region where this condition i
not satisfied, that is, for 1/2,s,2/3 no general statemen
could be found but one can find an infinite number of poi
such that each one of them can be reached by an infi
number of paths.

The existence of density function for the cases
51/2, N→` can be used to find the density for an infini
set of values ofs. For example, let us consider the cases
-
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51/A2. Separating the even and odd powers in Eq.~1!, we
have

XIS `,
1

A2
D 5 (

k even

`

6S 1

A2
D k

1 (
k odd

`

6S 1

A2
D k

. ~16!

Now, taking a common factor 1/A2 from the odd powers,
there remain two sums over even powers that can be
named with another index running throughall integers, leav-
ing

XIS `,
1

A2
D 5 (

k50

`

6S 1

2D k

1S 1

A2
D (

k50

`

6S 1

2D k

. ~17!

We see that the two sums correspond to the process fs
51/2 and therefore the random variableXI(`,1/A2) is the
sum of two random variables with known density functio
~uniform!

XIS `,
1

A2
D 5XI 8S `,

1

2D1S 1

A2
D XI 9S `,

1

2D . ~18!

The resulting density function is the convolution of two un
form density distributions. This result can be generalized
s51/An 2 resulting inn convolutions of uniform density func
tions. Whenn→` these multiple convolutions approach th
Gaussian distribution as is expected because 1/An 2→1 for n
→`. These results are illustrated by a numerical simulat
of the process takingN515. This value is large enough be
cause larger values ofN do not result in significant change
in the distributions. In Figs. 2~a! and 2~b! we find histograms
for the density distribution function for the casess51/A2
and s5A6 2. In the first case, the distribution clearly resu
from the convolution of two uniform distributions and in th
second case, the resulting distribution is very close to
Gaussian as the fit shows. These two smooth distributi
are in contrast with the cases shown in Fig. 3 that clea
show overlapping self-similarity structure. Actually, the a
pearance of overlapping self-similarity is expected, as w
explained, being a consequence of Eq.~6!. Perhaps the inter-
esting question is why the smooth cases do not show it
plicitly. We can indeed see examples where the convolut
of fractal distributions result in nonfractal smooth distrib
tions. In order to clarify this, we can generalize the argum
presented above with the conclusion that, if we know
density function for one value ofs5r , then we can find the
density function for an infinite number of values ofs5An r as
then-fold convolution of the known distribution. Now let u
take r ,1/2 corresponding to a fractal distribution an
choosen such thatAn r corresponds to a step factor with
smooth distribution such as 1/Am2. Therefore we find the, a
bit unexpected, situation that the convolution of fractal d
tributions lead to a smooth continuous distribution. The si
plest example of this is that the convolution of two frac
distributions for s51/4 results in the uniform distribution
corresponding tos51/2. We have therefore seen the pos
bility that, due to overlapping, the self-similarity patterns c
be completely whipped out. However, for this to happ
some sort of ‘‘fine tuning’’ of the step factor is required an
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therefore we expect that the set of values for the step fa
with this property will have zero measure.

Playing with the space-time diagrams as in Fig. 1~a!, we
find that for s,1/2 the largest hole is centered around t
position X50 and has a width (224s)/(12s). When 1/2
,s,1, instead of a central hole we will have a central clu
tering of end points produced by the overlap of the set
paths that have the first step to the right with the set co
sponding to the first step to the left. The width of the cent
cluster, that is, of the overlap region, is (4s22)/(12s) ~for
largeN). After the first step, the same reasoning is applied
explain the formation of another hole~if s,1/2) or cluster
~if 1/2,s,1) but now shifted to the right and to the left. S
an infinite number of holes or clusters are produced. In g
eral we expect to find a cluster~or hole! at a distance (1
2sn)/(12s) from the center of widthsnu4s22u/(12s)
were n50,1, . . . . There is more in the case 1/2,s,1 be-
cause each point within a cluster is the starting point of
same structure described. We will then have clusters wi

FIG. 2. Histograms for the number of pathsF reaching an in-
terval at the positionx after N515 steps with~a! s51/A2 and~b!
s51/A6 2. The first case is the convolution of two uniform distrib
tions and the second case is very close to a Gaussian distributi
is shown by the fit.
or

-
f
-
l

o

n-

e
in

clusters and so on. In Fig. 3, histograms for the end positi
after N519 steps withs50.52 ands5A(p21)/2p.0.58
are shown. This second value is of interest for the applica
of the process to a quantum-mechanical problem@8#. Notice
that the first case is less than 5% away from the valus
51/2 where a smooth uniform density is generated, sugg
ing a very strong dependence of the distribution on the v
ues ofs. These histograms clearly show patterns of overl
ping self-similarity explained above with the clusters havi
the predicted position and widths. In the case of Fig. 3~b!,
clusters within clusters are clearly seen.

We have seen that for most values of the step factor in
interval @1/2,1#, the density of the final positions will show
overlapping self-similarity features. For values ofs in a sub-
set of zero measure, the corresponding density is a sm
function. We will now see that there is a set of values os
that have the property that different paths meet after afinite
number of steps. Assume for instance,s5(A521)/2. In this

as

FIG. 3. Histograms for the number of pathsF reaching an in-
terval at the positionx after N519 steps with~a! s50.52 and~b!
s5A(p21)/2p.0.58. Both cases show overlapping se
similarity. The width and location of the clusters agree with t
values calculated.
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case there are two different paths that return to the origi
the third step. They are211s1s250 and 12s2s250.
These two paths form a square in the space-time diagram
we may therefore denote this case as asquare encounter.
There arefour different paths that return to the origin afte
six steps. One of them is for instance211s1s22s31s4

1s55211s1s21s3(211s1s2)50. Clearly, for this
step factor and forN→`, there is an infinite number o
paths that return to the origin due to square encounters. G
eralizing the argument, we find a countable infinite num
of values for the step factor, such that the origin can
reached by an infinite number of paths caused by squ
encounters; because for each integerm.2 there is a value of
s such that the path returns to the origin at themth step; with
the first step to the right and all other steps to the left~or the
opposite!. The value of the step factor is the root ofsm

22s1150 @there is always a real root in the interv
(1/2,1)#. In the example above we havem53. These en-
counters correspond to the case of vanishing gapGm50 of
the drifting picture withs,2. This property of the origin is
not unique because, as already mentioned, every point
ited can be considered to be the starting point of the~scaled!
process.

Another type of encounter after finite number of steps
when different paths starting at the origin meet again at
mth step, but not at the origin. Due to the left-right symm
try, there is another meeting point at the same coordinate
with reversed sign. Each one of these two meeting point
the starting point for the same process~with a common fac-
tor sm) resulting in four meeting points. Clearly, in the limi
there will be an infinite number of points with this propert
The value of the step factor that produces such a behavio
the simplest case is the solution of112s2s22s3521
2s1s21s3, that is, s31s22150 with a root s'0.755.
This last example can be generalized to a class of cases
we may callrectangular encountersbecause the two path
form a rectangle in a space-time diagram. Imagine one p
making the first step to the right and all other steps to
left. We can find a value ofs such that this path will encoun
ter a path made of the firstn steps to the left followed byr
steps to the right. For this encounter, the step factor mus
such that 15sn1sn111 . . . 1sn1r 21, that is, (12sr)/(1
2s)51/sn. For every pair of integersn>2,r>2 there is a
solution in the intervalsP(1/2,1). The example above co
responds ton5r 52. Aside from the square and the recta
gular encounters we can expect more complicated encou
corresponding to closed polygons in the space-time
grams. In addition to thesepolygonal encounters, there may
be encounters of paths having a different number of steps
the space-time diagram, they would result in an open fig
suggesting the name ofopen encounters. The general treat-
ment of all possible encounters seems to be a difficult pr
lem, equivalent to the study of all possible polynomials w
coefficients 0,61, 62 with root in @1/2,1#. It has been
proven@11# that the set of values ofs corresponding to thes
encounters has zero measure and there is an open mathe
cal conjecture@13# that the set is at most countable.

The remarkable thing about the encounters is that, in th
cases, the distribution becomes singular and does not ha
density function. The intuitive reason for this is that, wh
we have encounters, there are locations with a strong a
at
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mulation of paths reaching it. A distribution will have a de
sity function if the number of paths falling within an interva
divided by the total number of paths (2N) and by the size of
the interval, goes to a constant when the size of the inte
vanishes. This constant is proportional to the value of
density function at the point. We can see that this is not t
for every interval in the case that we have encounters@12#.
Let us take for instance a step factor producing square
counters after three steps~the simplest one!. ConsiderN
steps multiple of 3,N53n, and an interval of measures3n

around the centerx50 @that is, equal to the length of th
(N11)th step#. The number of paths falling in this interva
due to the square encounters is 2n. There are actually more
paths falling in the interval aside from those with encounte
ThereforeR, the relative number of paths falling in the in
terval per unit interval length, is such that

R>
2n

23ns3n
5S 1

4s3D n

'~1.06!n, ~19!

where we have used the value of the step factor for
square encounters5(A521)/2. Clearly, in the limit where
the interval vanishes,n→`, the ratioR diverges indicating
that there is no density function.

IV. SUMMARY AND CONCLUSIONS

The random walk with exponentially varying step h
been presented from a physical perspective describ
damped (s,1) or amplified (s.1) diffusion.s51 is there-
fore like a critical value separating two phases of bound
unbounded diffusion. The symmetry under the transform
tion s→1/s for finite number of stepsN relates these two
phases and reduces the range of study to the valuess<1.
The dependence of the process on the value of the step fa
is summarized in Fig. 1~b!. Whens,1/2 or s.2, the pro-
cess is retrodictive and the set of final positions is a frac
For step factors in the intervalsP@1/2,2#, whenN→`, the
process is no longer retrodictive but, in most cases, over
ping self-similarity patterns appear. For some special val
of the step factor, the density becomes smooth. Another
of values of the step factor, of zero measure, generate
different type of encounters of the paths after finite num
of steps. These encounters result in singular distributi
without density function. A complete study of this region
however, an unsolved problem that has been treated from
mathematical perspective of random series as a special
of Bernoulli convolutions@11,13,14# with emphasis on the
mathematical generalizations. The aim of this paper is
present the properties of the process in a simple and at
tive way with emphasis on the physical aspects of the pr
lem. We hope with this contribution to motivate furthe
progress on this subject.
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